lunes, 19 de marzo de 2012

Alotropos

File:Eight Allotropes of Carbon.png

a) Diamante: cuya dureza y alta dispersión de la luz lo hacen útil para aplicaciones industriales y joyería. El diamante es el mineral natural más duro conocido, lo que lo convierte en un abrasivo excelente y le permite mantener su pulido y lustre extremadamente bien. No se conocen sustancias naturales que puedan rayar, o cortar, un diamante.
El mercado para los diamantes de grado industrial opera de un modo muy diferente a su contraparte de grado gema. Los diamantes industriales son valuados principalmente por su dureza y conductividad térmica, haciendo muchas de las características gemología gemológicas del diamante, incluyendo claridad y color, principalmente irrelevantes. Esto ayuda a explicar por qué el 80% de los diamantes minados, inadecuados para uso como gemas y conocidos como bort, son destinados para uso industrial. Además de los diamantes minados, los diamantes sintéticos encontraron aplicaciones industriales casi inmediatamente después de su invención en la década de 1950; otros 600 millones de quilates (80000 kg) de diamantes sintéticos son producidos anualmente para uso industrial—casi cuatro veces la masa de diamantes naturales minados en el mismo período.

b) Grafito:   Es uno de los alótropos más comunes del carbono. A diferencia del diamante, el grafito es un conductor eléctrico, y puede ser usado, por ejemplo, como material en los electrodos de una lámpara de arco eléctrico. El grafito tiene la distinción de ser la forma más estable de carbono a condiciones estándar. En consecuencia, es usado en termoquímica como el estado estándar para definir el calor de formación de los compuestos de carbono.
El grafito es capaz de conducir la electricidad, debido a la deslocalización de los electrones π sobre y debajo de los planos de los átomos de carbono. Estos electrones tienen libertad de movimiento, por lo que son capaces de conducir la electricidad. Sin embargo, la electricidad es conducida sólo a los largo del plano de las capas. En el diamante, los cuatro electrones externos de cada átomo de carbono están 'localizados' entre los átomos en enlaces covalentes. El movimiento de los electrones está restringido, y el diamante no conduce corriente eléctrica. En el grafito, cada átomo de carbono usa sólo 3 de sus 4 electrones de los niveles de energía externos en enlaces covalentes a otros tres átomos de carbono en un plano. Cada átomo de carbono contribuye con un electrón a un sistema deslocalizado que es parte también del enlace químico. Los electrones deslocalizados son libres de moverse a través del plano. Por esta razón, el grafito conduce la electricidad a lo largo de los planos de los átomos de carbono, pero no conduce en una dirección a ángulos rectos al plano.

c) Lonsdaleita es un alótropo hexagonal del alótropo de carbono diamante, que se cree se forma a partir del grafito presente en los meteoritos al impactar sobre la Tierra. El gran calor y tensión del impacto transforman el grafito en diamante, pero reteniendo la estructura cristalina hexagonal del grafito. El diamante hexagonal ha sido sintetizado en el laboratorio, mediante compresión y calentamiento del grafito, tanto mediante el uso de una prensa estática, o usando explosivos.

d) Fullereno: la tercera forma más estable del carbono, tras el diamante y el grafito. El primer fullereno se descubrió en 1985 y se han vuelto populares entre los químicos, tanto por su belleza estructural como por su versatilidad para la síntesis de nuevos compuestos, ya que se presentan en forma de esferas, elipsoides o cilindros. Los fullerenos esféricos reciben a menudo el nombre de buckyesferas y los cilíndricos el de buckytubos o nanotubos. Reciben este nombre de Buckminster Fuller, que empleó con éxito la cúpula geodésica en la arquitectura.

g) Carbono amorfo: no tiene una estructura cristalina. Como con todos los materiales vítreos, puede presentarse algún orden de corto alcance, pero no hay patrones de largo alcance de las posiciones atómicas.
Aunque puede fabricarse carbono completamente amorfo, el carbono amorfo natural (como el hollín) realmente contiene cristales microscópicos de grafito,[1] algunas veces diamante.[2] A escala macroscópica, el carbono amorfo no tiene una estructura definida, puesto que consiste en pequeños cristales irregulares, pero a escala nanomicroscópica, puede verse que está hecho de átomos de carbono colocados regularmente
El carbón y el hollín o negro de carbón son llamados informalmente carbono amorfo. Sin embargo, son productos de la pirólisis, que no produce carbono amorfo verdadero bajo condiciones normales. La industria del carbón divide al carbón en varios grados, dependiendo de la cantidad de carbono presente en la muestra, comparada con la cantidad de impurezas. El grado más alto, antracita, es aproximadamente 90 por ciento carbono y 10% otros elementos. El carbón bituminoso es aproximadamente 75-90% carbono, y el lignito es el nombre del carbón que tiene alrededor de 55 por ciento de carbono..

Nanotubo: estructuras tubulares cuyo diámetro es del tamaño del nanómetro. Existen nanotubos de muchos materiales, tales como silicio o nitruro de boro pero, generalmente, el término se aplica a los nanotubos de carbono.

Los nanotubos de carbono son una forma alotrópica del carbono, como el diamante, el grafito o los fulerenos. Su estructura puede considerarse procedente de una lámina de grafito enrolladas sobre sí misma.[1] Dependiendo del grado de enrollamiento, y la manera como se conforma la lámina original, el resultado puede llevar a nanotubos de distinto diámetro y geometría interna. Estos tubos, conformados como si los extremos de un folio se uniesen por sus extremos formando un canuto, se denominan nanotubos monocapa o de pared simple. Existen, también, nanotubos cuya estructura se asemeja a la de una serie de tubos concéntricos, incluidos unos dentro de otros, a modo de muñecas matrioskas y, lógicamente, de diámetros crecientes desde el centro a la periferia. Estos son los nanotubos multicapa. Se conocen derivados en los que el tubo está cerrado por media esfera de fulereno, y otros que no están cerrados.

http://es.wikipedia.org/wiki/Al%C3%B3tropos_del_carbono#Lonsdale.C3.ADta_.28diamante_hexagonal.29

Carbono

Alimentación

~> Dia  #1  (10/Marzo/2012)

*Yoghurt Fresa
*Paste
*Sopa de fideo
*Pechuga azada
*Nopales
*2 Tortillas
*Cafe
*Pan

~> Día #2 (11/Marzo/2012)

*Te
*2 tacos de bostek
*Paleta de hielo
*1 manzana
*Sopa de fideo
*Bistek
*2 tortillas
*Cereal & leche

~> Dia 3 (12/Marzo/2012)

*Yogurth de Durazno
*1 Sandwich de milanesa
*Refresco
*1 manzana
*Caldo de pollo
*Tortas de Carne en chile verde
*Cereal con leche

miércoles, 14 de marzo de 2012

Alimentaciòn

La nutrición es la ingesta de alimentos en relación con las necesidades dietéticas del organismo. Una buena nutrición (una dieta suficiente y equilibrada combinada con el ejercicio físico regular) es un elemento fundamental de la buena salud.

Una mala nutrición puede reducir la inmunidad, aumentar la vulnerabilidad a las enfermedades, alterar el desarrollo físico y mental, y reducir la productividad.
Los alimentos proporcionan la energía y los nutrientes que necesita para estar sano. Entre los nutrientes se incluyen las proteínas, carbohidratos, grasas, vitaminas, minerales y agua.
Aprender a comer de manera nutritiva no es difícil. Las claves son:
·         Consumir una variedad de alimentos, que incluyan los vegetales, frutas y productos con granos integrales
·         Consumir carnes magras, aves, pescado, guisantes y productos lácteos descremados
·         Beber mucha agua
·         Consumir moderadamente sal, azúcar, alcohol, grasas saturadas y grasas trans
Las grasas saturadas suelen provenir de los animales.
ORGANIZACIÓN MUNDIAL DE LA SALUD  OMS

lunes, 13 de febrero de 2012

Präctica

Objetivos:
Ø  Señalará cuales son los cationes y aniones más comunes que están presentes en la parte inorgánica del suelo.
Ø  Reconocerá que los compuestos inorgánicos se clasifican óxidos, hidróxidos, ácidos y sales.
Ø  Aplicará el concepto ion a la composición de sales.
Ø  Clasificará a las sales en carbonatos, sulfatos, nitratos, fosfatos, cloruros y silicatos.

Cuestionarios de Investigación.
Ø  Investiga a qué se le llama parte inorgánica del suelo y por qué recibe ese nombre
Ø  De acuerdo a la definición de mineral, explica porqué son considerados compuestos. Por ello, consulta las características de los compuestos químicos.
Ø  Investiga qué son las rocas, cuales se encuentran en la superficie de la corteza terrestre. Indica de qué están constituidas y cómo se clasifican.
Ø  Investiga qué son los minerales, cuáles son los más comunes en la corteza terrestre.


Procedimiento:

1.   Extracción acuosa de la muestra de suelo.
Pesa 10 g de suelo previamente seca al airey tamízalo a través de una malla de 2 mm.  Introduce la muestra en un matraz y agrega 50 mL de agua destilada. Tapa el matraz y agita el contenido de 3 a 5 minutos. Filtra el extracto, y en caso de que éste sea turbio, repite la operación utilizando el mismo filtro. Al concluir la filtración tapa el matraz.
IDENTIFICACIÓN DE ANIONES

2.   Identificación de cloruros (Cl-1).
Reacción Testigo: en un tubo de ensaye coloca 2 mL de agua destilada y agrega algunos cristales de algún cloruro (cloruro de sodio, de potasio, de calcio, etc.). Agita hasta disolver y agrega unas gotas de solución de AgNO3  0.1N (nitrata de plata al 0.1 N). Observarás la formación de un precipitado blanco, que se ennegrecerá al pasar unos minutos. Esta reacción química es característica de este ión.
Muestra de suelo: en un tubo de ensayo coloca 2 mL del filtrado. Agrega unas gotas de ácido nítrico diluido hasta eliminar la efervescencia. Agrega unas gotas de solución de AgNO3 0.1N. Compara con tu muestra testigo.

3.   Identificación de Sulfatos (SO4-2).
Reacción testigo: en un tubo de ensayo coloca 2 mL de agua destilada y agrega unos pocos cristales de algún sulfato (sulfato de sodio o de potasio) Agrega unas gotas de cloruro de bario al 10%. Observarás una turbidez, que se ennegrecerá al pasar unos minutos.
Muestra del suelo: en un tubo de ensayo coloca 2 mL de filtrado. Adiciona unas gotas de cloruro de bario al 10 %. Compara con tu muestra testigo.

4.   Identificación de Carbonatos (CO3-2).
Reacción testigo: en un vidrio de reloj, coloca un poco de carbonato de calcio y adiciona unas gotas de ácido clorhídrico diluido. Observarás efervescencia por la presencia de carbonatos.
Muestra de suelo: en un vidrio de reloj, coloca un poco de muestra de suelo seco. Adiciona unas gotas de ácido clorhídrico diluido. Compara con la muestra testigo.

5.   Identificación de sulfuros (S-2)
Reacción testigo: en un tubo de ensayo coloca 2 mL de agua destilada y agrega unos pocos cristales de algún sulfuro. Adiciona unas gotas de cloruro de bario al 10% y un exceso de ácido clorhídrico. Observarás que se forma una turbidez, que con el paso del tiempo se ennegrecerá.
Reacción muestra: en un tubo de ensayo coloca 2 mL de filtrado. Adiciona tres gotas de cloruro de bario al 10 % y un exceso de ácido clorhídrico. Compara con tu muestra testigo.



6.   Identificación de nitratos (NO3-1).
Reacción testigo: un tubo de ensayo coloca 2 mL de agua destilada y agrega unos pocos cristales de algún nitrato (de sodio por ejemplo), y agita para disolver. Añade gota a gota H2SO4 3M, hasta acidificar (verificar acidez con papel tornasol)
Agrega 2 mL  de solución saturada de FeSO4. Inclina el tubo aproximadamente a 45º y añade despacio y resbalando por las paredes 1 mL de H2SO4 concentrado. PRECAUCIÓN: ESTA REACCIÓN ES FUERTEMENTE EXOTÉRMICA. Evita agitación innecesaria. Deja reposar unos minutos y observa la formación de un anillo café.
Reacción muestra: coloca 2 mL de filtrado del suelo en un tubo de ensayo. Añade gota a gota H2SO4 3M, hasta acidificar (verificar acidez con papel tornasol)
Agrega 2 mL  de solución saturada de FeSO4. Inclina el tubo aproximadamente a 45º y añade despacio y resbalando por las paredes 1 mL de H2SO4 concentrado. Sigue las indicaciones de la muestra testigo y compárala.

IDENTIFICACIÓN DE CATIONES
7.   Identificación de Calcio (Ca+2).
Introduce un alambre de nicromel en el extracto de suelo y acércalo a la flama del mechero bunsen. Si observas una flama de color naranja, indicará la presencia de este catión.

8.   Identificación de Sodio (Na+1).
Coloca 1 g de suelo seco y tamizado en un tubo de ensayo. Disuelve la muestra con 5 mL de solución de ácido clorhídrico (1:1). Introduce el alambre de nicromel y humedécelo en la solución, llévalo a la flama del mechero, si esta se colorea de amarillo indicará la presencia de iones sodio.

9.   Identificación de Potasio (K+1).
Coloca 1 g de suelo seco y tamizado en un tubo de ensayo. Agrega 20 mL de acetato de sodio 1N y agita 5 minutos. Filtra la suspensión, toma un alambre de nicromel, humedécelo en esta suspensión y llévalo a la flama del mechero bunsen. Si hay presencia de iones potasio se observa una flama de color violeta.


Observaciones.
Anota todas las observaciones de cada una de las pruebas de identificación que hiciste con cada muestra de suelo

 Resultados:


Muestra de suelo
Cloruros
Sulfatos
Carbonatos
Sulfuros
Nitratos
Sodio
Potasio
Calcio
1








2








3








4











Análisis.
Realiza el análisis de los resultados y observaciones de cada una de las muestras y compáralas con el resto de muestras.

Conclusiones.
Elabora las conclusiones que te permitan mencionar las características químicas de cada muestra de suelo, a partir de su composición de componentes.
La composición orgánica del suelo está constituida por dos componentes, los orgánicos y los inorgánicos. A su vez, la parte orgánica está formada por los residuos de vegetales y animales que se encuentran en diferentes grados de descomposición, lo que es causado por la presencia de microorganismos. La inorgánica la constituyen el conjunto de minerales que se estudiarán más adelante.
Cuando la mayor parte de la materia orgánica se ha degradado a sus componentes más simples se les nombra HUMUS, el cual es una mezcla de diversas sustancias en las que se integran partículas de diferentes tamaños entre los que se encuentran los coloides. Estos pueden intercambiar iones, ayudan a la formación del suelo y también retienen gran cantidad de agua y de nutrientes.
Existen otros microorganismos que se encargan de fijar el nitrógeno del aire atmosférico al suelo, transformándolo en compuestos inorgánicos simples y solubles, por ejemplo, el amoniaco y los nitratos. Estos últimos son absorbidos por las raíces de las plantas para la fabricación de sustancias como las proteínas.

INESTIGACIÓN.
Indicaciones. Responde cada una de las siguientes preguntas y después analiza tus respuestas con tu equipo de trabajo, y por último, con todo el grupo.

1.      Realiza un cuadro comparativo en el que indiques las características representativas de las sustancias orgánicas y de las sustancias inorgánicas.

Características.     Construye una tabla con las características de cada tipo.

Sustancias Orgánicas
Sustancias Inorgánicas




2.     Investiga cinco de los compuestos químicos presentes en la materia orgánica.
3.     De los compuestos químicos investigados, indica el nombre y símbolo de los elementos presentes en ellos.
4.     Señala cinco funciones que desempeña la materia orgánica en el suelo.
5.     Investiga el concepto de HUMUS y explícalo.
6.     Menciona cuatro de los compuestos químicos que contiene el humus.
7.     Realiza un mapa conceptual acerca de la composición orgánica del suelo. 


DETERMINACIÓN DEL PORCENTAJE DE MATERIA ORGÁNICA.

Objetivos.
Ø  Observar y describir las características de los componentes de la fase sólida del suelo.
Ø  Calcular el porcentaje de materia orgánica de las cuatro muestras de suelo.


Material
Sustancias
Cápsula de porcelana
Balanza
10 g de muestra de suelo
Mechero bunsen
Pinzas para crisol
(4 muestras diferentes de suelo)
Soporte universal con anillo y rejilla de asbesto



Procedimiento.
1.      Pesar 10 g de suelo seco en una cápsula de porcelana.
2.     Colocar la cápsula de porcelana en la rejilla del soporte universal, enciende el mechero, y calienta hasta la calcinación (de 15 a 20 minutos). Si la muestra de suelo posee un alto contenido de hojarasca, el tiempo se prolongará lo suficiente hasta su total calcinación.
3.     Dejar enfriar la mezcla y posteriormente pésala nuevamente, anotando la variación de la masa.
4.     Calcular el porcentaje de materia orgánica.

PROPIEDADES FÍSICAS

Propiedad
¿Cómo medirla?
Densidad
1.      Para medir la masa de una muestra de tierra, se coloca ésta en una balanza (utiliza un vidrio de reloj o cápsula de porcelana) para colocarla en el platillo de la balanza.
2.     Para determinar el volumen de la muestra de suelo, una vez medida su masa en la balanza, se hace por medio de desplazamiento de agua (considerando que la tierra es un sólido insoluble en ésta.
3.     Volumen por desplazamiento de agua. En una probeta agrega 20 o 30 mL de agua (dependiendo de la cantidad de tierra que hayas medido su masa) y posteriormente agrega la tierra, el aumento en el nivel del agua corresponde al volumen de la tierra.
4.     Volumen agua + Volumen de tierra =  V2
Entonces   Volumen de tierra = V2  -  Volumen de agua
Así 
% Humedad
Indica la cantidad de agua que existe en el suelo (tipo de tierra) expresada en porcentaje.
1.      Mide la masa de una muestra de suelo en una balanza; en una cápsula o crisol de porcelana. Recuerda medir previamente la MASA DE LA CÁPSULA O CRISOL, para restarle posteriormente su valor. (masa inicial)
2.     Como se requiere conocer la cantidad de agua que contiene el suelo, necesitamos eliminar ésta de la muestra, por ello, debemos calentar hasta lograrlo, para tener un calentamiento homogéneo utilizamos una estufa o mufla, el tiempo necesario dependiendo del tamaño de muestra.
3.     Una vez eliminada el agua de la mezcla, procedemos a medir la masa nuevamente (masa final).
4.     A ambos valores de masa hay que restar el valor de la masa de la cápsula o crisol.
Entonces:
                Masa de agua  =  masa inicial  -   masa final
% Humedad será:
                  Masa inicial    -      100%
                  Masa agua      -     X %               X%  = % Humedad
Cantidad de Aire en el Suelo
% Aire
(Porosidad)
La cantidad de aire que contiene un tipo de suelo, depende del tamaño de partículas que posea la mezcla. Por el tamaño de éstas partículas se tiene mayor o menor porosidad, y por lo tanto tendremos mayor o menor cantidad de aire entre éstas.
Para medirlo tenemos que:
1.   Medir en una probeta de 50 o 100 mL completamente seca, el volumen de una muestra de suelo.
2.   Medir en una probeta de 50 o 100 mL completamente seca, el volumen de una muestra de suelo.
3.   En otra probeta de 50 o 100 mL agregar 30 mL de agua.
4.   Vaciar la tierra (una vez que hayas medido su volumen) a la probeta que contiene el  agua, observaras que el nivel del líquido cambia y salen algunas burbujas de aire.
Así, tenemos volumen de tierra seca (V1), volumen de agua (V2)  y volumen de agua con tierra (V3), entonces:
       Si       V3  -   V2  =  Volumen de aire

               Volumen de tierra seca    -    100%
                Volumen de aire              -    Y%           Y%  = % Aire






Propiedad
¿Cómo medirla?
Solubilidad
Esta propiedad no la determinaremos por cada uno de los componentes de la mezcla de suelo, nos abocaremos a considerar en cada muestra que hay materia que es soluble en agua y otra que no lo es (sin considerar cuantas sustancias lo son y cual es su valor de solubilidad)
Por lo tanto consideraremos que tendremos un porcentaje en masa de materia soluble y de materia insoluble, entonces determinaremos:
1.   Medir la masa de una muestra de suelo (M1), en una cápsula de porcelana (a la cual previamente tendrás que determinar su masa)
2.   Agregar agua y agitar la mezcla para ayudar a disolver a las sustancias solubles.
3.   Filtrar la mezcla y recoger el filtrado en la cápsula de porcelana limpia.
4.   Evaporar el agua del filtrado hasta la cristalización de alguna sustancia.
5.   Dejar enfriar y medir nuevamente la masa del contenido de la cápsula (M2)
Entonces:
                Cantidad de sustancias solubles  =  M2
              Cantidad de sustancias Insolubles =  M1  -  M2 

                 M1     -    100%
                 M2     -     Z%              Z% = % de materia soluble en la muestra


Observaciones:
En toda actividad tenemos que fijarnos lo que ocurre en cada uno de los procedimientos que seguimos e irlos anotando, para tener registrados todos aquellos cambios o alteraciones de lo que estamos haciendo. Es recomendable registrar todas aquellas observaciones que nos permitan argumentar si lo realizado esta bien hecho o tendríamos que hacer modificaciones a nuestro procedimiento.

Análisis.
En todas las actividades deberás hacer un análisis que consiste en una revisión, tanto de las observaciones realizadas, así como, de los datos y/o resultados que haz obtenido para cotejar, comparar y examinar el comportamiento de lo que se pretende en la experimentación. Este análisis permitirá contar con elementos que sirvan para justificar y aprobar la (s) hipótesis planteadas.

Por ello,  en esta actividad experimental tendrás que analizar los resultados de las propiedades físicas  de cada una de las muestras de suelo, compararlas con el resto de estas muestras y considerar por ello, las características que tiene cada tipo de suelo de las muestras analizadas.